Как укоротить линейную светодиодную лампу
для аквариума

Обратился ко мне знакомый с просьбой отремонтировать лампу подсветки аквариума ALEAS. Лампа была в герметичной колбе и когда я ее извлек, то оказалась люминесцентной, длиной 48 см.

Перегоревшая люминесцентная лампа ALEAS

Прозвонка мультиметром показала, что в трубке перегорели нити накала. Вместо нескольких Ом сопротивление было бесконечно большим. После вскрытия корпуса драйвера обнаружилось, что перегорело несколько резисторов и пробиты ключевые транзисторы. Лампа ремонту не подлежала.

Перегоревший драйвер люминесцентной лампы ALEAS

Изучение рынка показало, что специальные лампы для подсветки аквариумов, даже при онлайн заказе в китайских магазинах, стоили более $10. Пришлось придумывать как заменить специализированную линейную лампу дешевой светодиодной.

Универсальный линейный LED светильник AC RB 8 W

В результате была найдена в одном из сетевых магазинов линейная светодиодная лампа за пару долларов длиной 70 см, более короткой не было. Смотрелась лампа в аквариуме плохо, так как выходила за его боковые стенки и крышка плотно не прилегала.

При ремонте светодиодных ламп зачастую при отсутствии подходящего светодиода замыкал между собой выводы отказавших. Основываясь на этом опыте решил попробовать укоротить лампу до длины 48 см, чтобы ее можно было установить в аквариумной крышке.

Ранее мне приходилось заниматься аналогичной задачей, но тогда пришлось переделывать подсветку в крышке Aquael и заменять стандартную линейную люминесцентную лампу на стандартную светодиодную, которую тоже пришлось укоротить.

Электрическая схема линейной светодиодной лампы

Как известно, в отличии от ламп накаливания, для работы светодиодов нужно обеспечить нестабильность напряжения, а стабильность тока постоянного напряжения. Эту задачу выполняет драйвер-генератор заданной величины тока. Поэтому вполне возможно удалить часть светодиодов, сохранив работу лампы без переделки драйвера.

LED светильник AC RB 8 W со снятым колпачком

Поэтому для принятия решения об укорочении лампы необходимо изучить ее устройство и вычертить электрическую схему. Разобрать лампу оказалось просто, достаточно было с небольшим усилием снять с торцов колпачки и алюминиевая планка со светодиодами и установленным на ней драйвером легко извлеклась из пластмассовой трубки-корпуса.

Печатная плата светильника AC RB 8 W

Светодиодов, соединенных последовательно на планке показано только пять из 70, для наглядности. Как видно, все элементы светодиодной лампы расположены на печатной плате из алюминиевого сплава. Справа по двум проводам подается сетевое напряжение 220 В непосредственно на диодный мостовой выпрямитель.

Микросхема  CD1000UAE6 на печатной плате светильника AC RB 8 W

С положительного вывода выпрямительного моста D1 питающее напряжение подается на катод первого в цепи светодиода HL1. А с отрицательного вывода, по печатной дорожке, проходящей по краю всей длины платы на выводы стабилизирующей ток микросхемы U1 типа CD1000UAE6. Величина тока задается резистором R1 величиной 12 Ом.

Электрическая схема светильника AC RB 8 W с драйвером на микросхеме драйвера CD1000UAE6

В схеме отсутствуют конденсаторы, поэтому коэффициент пульсаций освещённости такого светильника с частотой 100 Гц будет максимально возможный. Для освещения рабочего места с напряженным трудом не подходит. А для освещения помещений общего назначения и растений вполне подойдет.

Анализ электрической схемы светильника показал, что теоретически его вполне можно значительно укоротить. Осталось только произвести расчеты и определить, возможность работы микросхемы CD1000UAE6 работать в таком режиме. Нужно было укоротить лампу на 27 светодиодов.

Измерение величины тока через светодиоды в светильнике AC RB 8 W

Измерения показали, что падение напряжения на одном светодиоде составило около 2,8 В при протекающем токе 24 мА. При этом микросхема U1 нагревалась до температуры не более 40°С.

Типовая схема подключения микросхемы CD1000UAE6

Даташит на микросхему CD1000UAE6 найти не удалось, но аналогичная микросхема типа CYT1000AEC в таком же корпусе обеспечивала выходной ток 5-60 мА и допускала работу при нагреве 140°С. Это давало основания провести эксперимент, удалив из цепи 27 светодиодов.

Ток через светодиоды полсе укорачивания светильника

Для проверки предположения 27 светодиодов были замкнуты с помощью амперметра, заодно измерен протекающий через оставшиеся ток. Время работы в таком включении лампы составило более трех часов. Нагрев микросхемы U1 не превышал 60°С (прикосновение к корпусу микросхемы и удержание его продолжительное время было возможно).

Ток потребления составил 18 мА, что в совокупности с уменьшением числа светодиодов до 43 снизит мощность светильника до 4 Вт. Этого вполне достаточно для подсветки небольшого аквариума. Если окажется света мало, то можно будет установить в крышку несколько переделанных светильников.

Укорочение светодиодного линейного светильника

Так как схема драйвера разбита на две части и установлена на концах печатной платы, то нужно в первую очередь решить в каком месте резать плату. Так как микросхема U1 нагревается больше, чем выпрямительный мост D1, то удалять часть платы лучше со стороны этого моста.

Перед работой нужно от платы отпаять сетевые провода. Если этого не сделать, то они все равно отломаются в месте припайки к контактам.

Разрезание лобзиком печатной платы светодиодного светильника

Пилить печатную плату лучше всего ручным лобзиком или пилой мо металлу, зажав плату в тисках. С места распила нужно тщательно удалить все заусенцы и зазубрины, чтобы исключить замыкание на алюминиевую основу печатных проводников.

Внешний вид разрезанной печатной платы светодиодного светильника

Далее нужно снять защитный слой с токоведущих дорожек печатной платы. Контур дорожек хорошо просматривается через покрытие и легко соскабливается с помощью кончика ножа.

Проводники печатной платы соединены в месте реза с помощью перемычек из гибких проводов

Останется только покрыть припоем очищенные от лака площадки и соединить их с помощью паяльника медными проводами в изоляции.

Лак для ногтей для изоляции места пайки гибких проводов

Для надежной изоляции печатных дорожек в месте реза платы и ее основания нужно покрыть торцы в изоляционным лаком. Для этих целей хорошо подойдет любой лак для ногтей.

Покрытие мест пайки лаком для ногтей

Достаточно кисточкой от лака нанести один слой на торцы и контактные площадки. Заодно места пайки будут защищены от окисления, так как светильник будет работать в зоне повышенной влажности.

Укорачивание пластмассовой трубки лампы

Осталось укоротить с помощью лобзика трубку светильника в размер длины печатной платы, и снять заусенцы. Как раз за это время успеет высохнуть лак.

Укорачивание пластмассовой трубки лампы

После укорачивания светильника остались светодиоды, которые пригодятся для ремонта ламп. Судя по размеру их корпуса 5,6×3 мм это светодиоды типа LED-SMD5630, но по электрическим параметрам они имеют мощность около 50 мВт, вместо 500 мВт, которую должен иметь светодиод такого типоразмера.

Но в этом есть плюс, так как корпус способен рассеять мощность до 0,5 Вт, то светодиоды в светильнике будут работать в облегченном температурном режиме, что продлит срок его службы.

Укорачивание пластмассовой трубки лампы

Внешне светильник не изменился, только стал на треть короче. Ходовые испытания светильника в течение нескольких часов не выявили поломки. Температура нагрева конца светильника со стороны установки микросхемы U1 по ощущениям, не превышала 40°С. Осталось только проверить работу светильника непосредственно в аквариуме.