Как правильно выбрать
уличный светодиодный светильник или прожектор

Прожектор – это световой электроприбор, обеспечивающий излучение светового потока высокой концентрации внутри малого телесного угла.

Внешний вид классического прожектора

Виды и классификация
уличных светодиодных светильников и прожекторов

По назначению прожекторы бывают:

В качестве источников света в уличные светильники и прожекторы устанавливают:

По классу защиты (IP) от попадания в корпус уличного светильника или прожектора пыли и воды они выпускаются для работы:

В современных уличных светильниках и прожекторах вместо ламп устанавливают светодиоды или светодиодные матрицы, так как они по всем техническим характеристикам многократно превосходят лампы любого типа. Главным преимуществом светодиодных источников света являются низкая потребляемая мощность и большой срок службы. Благодаря этим показателям, несмотря на более высокую закупочную цену уличных светодиодных осветительных приборов, эксплуатационные затраты получаются низкими, что обеспечивает большую экономию денег в долгосрочной перспективе.

Светодиоды и светодиодные матрицы из-за конструктивных особенностей имеют узкий угол излучения светового потока (около 120°), в результате чего однозначно классифицировать световые приборы стало сложно. Если в светодиодном светильнике светодиоды или светодиодные матрицы установлены на одной плоскости, то он уже по определению является Прожектором.

По предназначению светодиодные прожекторы бывают:

В качестве светодиодного источника света в уличных светильниках и прожекторах применяются:

Светильники для уличного освещения

На фотографии представлена линейка светодиодных уличных светильников типа ДиУС, изготовленных с применением светодиодов мощностью 1 ватт. Эти уличные светильники комплектуются драйвером, представляющим собой герметичный самостоятельный блок, который подключается к светодиодному блоку с помощью разъема. Закреплен драйвер на корпусе светильника с помощью винтов и в случае необходимости его замены для ремонта легко отсоединяется от печатной платы со светодиодами.

Уличные светильники с точечными светодиодами легко ремонтировать, так как есть возможность оперативно заменить драйвер, а в случае выхода из строя одного из светодиодов его можно заменить исправным самостоятельно, как при ремонте светодиодной лампочки.

Внешний вид светодиодного прожектора с светодиодной матрицей

На этой фотографии показан классический светодиодный уличный прожектор, в котором в качестве источника излучения света применена светодиодная матрица. Обычно мощность светодиодной матрицы не превышает 50 ватт, поэтому в более мощных матричных светильниках устанавливают несколько светодиодных матриц. Драйвер у этого вида светильников установлен внутри его корпуса, что требует в случае отказа драйвера демонтировать светильник с места установки.

Внешний вид светодиодной матрицы для прожектора

Светодиодная матрица представляет собой подложку, на которой смонтировано множество светодиодных кристаллов и в случае выхода из строя одного из них вся матрица приходит в негодность. На фотографии, сгоревшая от перегрева светодиодная матрица из светодиодного прожектора, который мне пришлось ремонтировать. На ней хорошо видны квадратики, в которых размещены светодиодные кристаллы. Стоит светодиодная матрица дорого, поэтому с точки зрения затрат на ремонт уличные светильники с точечными светодиодами приобретать экономически выгоднее.

Внешний вид светодиодного прожектора с smd светодиодами

На фотографии представлен светодиодный прожектор, в котором в качестве излучателя света использованы smd светодиоды. Использование в прожекторах светодиодов вместо светодиодной матрицы позволяет заменять только перегоревший светодиод, а не матрицу целиком, что существенно снижает эксплуатационные затраты.

Устройство уличного светодиодного матричного светильника

Внешний вид светодиодного прожектора со стороны установки светодиодной матрицы показан на фотографии выше. Если открутить четыре винта и снять защитную крышку с оптическим стеклом и отражающим рефлектором, то появится доступ к светодиодной матрице.

Внешний вид светодиодного прожектора со снятой крышкой со стороны светодиодной матрицы

Как видно из фотографии прожектор представляет собой литой из алюминиевого сплава корпус, который одновременно служит для отвода тепла от матрицы. Матрица закреплена к корпусу с помощью двух винтов, хотя конструкция корпуса и матрицы предусматривает крепление с помощью четырех винтов. Похоже, производитель сэкономил на винтах. Отсутствие зазора между корпусом прожектора и подложкой матрицы в совокупности с теплопроводящей пастой обеспечивает хороший отвод тепла от кристаллов и как следствие, надежную работу прожектора в целом.

Внешний вид светодиодного прожектора со стороны крепежной скобы

А так выглядит прожектор с тыльной стороны. Сетевой провод, для герметизации обжатый специальной гайкой, входит в крышку, закрепленную четырьмя винтами через силиконовую прокладку к корпусу прожектора. Для закрепления прожектора на столбе или стене предусмотрена вращающаяся скоба. На корпусе прожектора сделаны вертикальные ребра, служащие для более эффективного отвода выделяемого матрицей тепла.

Внешний вид светодиодного прожектора со снятой задней крышкой со стороны установки драйвера

Под задней крышкой прожектора находится драйвер, преобразующий сетевое напряжение 220 В в напряжение со стабилизированным током, необходимое для работы светодиодной матрицы.

Как видите, устроен светодиодный прожектор совсем просто и состоит из корпуса, драйвера и светодиодной матрицы. Так же устроен и любой светодиодный уличный светильник и отличается только внешним видом и конструктивным исполнением.

Выбор уличного светодиодного светильника или прожектора

Для того чтобы правильно выбрать уличный светильник, который продолжительное время работал и эффективно освещал требуемую территорию, необходимо разбираться в его технических характеристиках и параметрах.

По классу защиты IP

Главной технической характеристикой, на которую в первую очередь следует обратить внимание при выборе любого уличного светильника, является класс его защиты от попадания в корпус твердых частиц и воды. Маркируются светодиодные светильники всеми производителями, по единому международному стандарту. Класс защиты в маркировке обозначается в соответствии с требованиями стандарта защиты электрооборудования от воздействия внешних факторов IEC-952.

Справочная таблица маркировки защиты светильников от воздействия внешних факторов
Порядковый № цифровой последовательности в маркировке Обозначение в маркировке Расшифровка обозначения
Класс защиты от воздействия внешних факторов IP Класс защиты в маркировке обозначается в соответствии с требованиями стандарта защиты электрооборудования от воздействия внешних факторов IEC-952
Первая цифра после IP, защита от проникновения твердых предметов
0Нет защиты
1От проникновения тел диаметром 50 мм и более
2От проникновения тел диаметром 12 мм и более, длиной не более 80 мм
3От проникновения тел диаметром 2,5 мм и более
4От проникновения тел диаметром 1 мм и более
5Допускается попадание пыли в количестве, недостаточном для нарушения работоспособности оборудования
6Попадание пыли не допускается
Вторая цифра после IP, защита от попадания жидкости внутрь корпуса 0Нет защиты
1От вертикально падающих капель воды
2От капель воды, падающих под углом 15°
3От капель воды, падающих под углом 60°
4От воды, разбрызгиваемой под любым углом
5От струи воды, разбрызгиваемой под любым углом
6 От сильной струи воды (100 л/мин, 100 кПа)
7От попадания воды при погружении на глубину до 15 см
8От попадания воды при длительном погружении

Воспользовавшись данными таблицы легко определить, какой класс защиты от воздействия внешних факторов должен иметь светодиодных светильник и сделать правильный выбор. Например, при установке светильника на столбе под открытым небом в его корпус могут проникать твердые частицы в виде пыли и вода от дождевых осадков. Следовательно, необходимо выбрать уличный светильник с классом защиты не ниже IP64, где цифра 6 обозначает недопустимость попадания в корпус пыли, а 4 обозначает обеспечение защиты от воды, разбрызгиваемой под любым углом.

По освещенности на уровне покрытия

На следующем этапе выбора уличного светильника необходимо определить, исходя из объекта освещения, величину освещенности на освещаемой поверхности.

Внешний вид люксметра-яркомера ТКА-04/03

Освещенность поверхностей принято измерять в люксах, которые кратко обозначаются лк и измеряется с помощью прибора, который называется Люксметр. Для представления освещенности поверхностей в люксах (слово произошло от латинского слова lux, переводится на русский язык - свет), можно сравнить ее с освещенностью, которую обеспечивает полная луна в ясную погоду, это всего 0,2 лк. А прямые солнечные лучи создают на поверхности земли освещенность 100 000 лк. Для выполнения тонких работ, например ювелирных, достаточно освещенности 300 лк.

Нормы освещенности поверхностей регламентируются государственным документом: «Естественное и искусственное освещение» - СНиП 23-05-2010, которые являются актуализированной редакцией СНиП 23-05-95 (Строительные нормы и правила утверждены приказом Минрегиона России и введены в действие в 2011 г.). Для выбора уличного светильника вполне достаточно информации, приведенной в таблице ниже.

Требования СНиП 23-05-2010 к средней горизонтальной освещенности на уровне покрытия
Освещаемые объектыСредняя горизонтальная освещенность, лк
Главные пешеходные улицы, непроезжие части площадей категорий А и Б и предзаводские площади 10
Пешеходные улицыв пределах общественных центров 6
на других территориях10
Тротуары, отделенные от проезжей части на улицах категорийА и Б4
В2*
Посадочные площадки общественного транспорта на улицах всех категорий10
Пешеходные мостики10
Пешеходные тоннелиднем100
вечером и ночью50
Лестницы пешеходных тоннелей вечером и ночью20
Пешеходные дорожки бульваров и скверов, примыкающих к улицам категорий А6
Б4
В2
Территории микрорайонов
Проездыосновные4
второстепенные, в том числе тротуары-подъезды2
Хозяйственные площадки и площадки при мусоросборниках2
Детские площадки в местах расположения оборудования для подвижных игр10
* Норма распространяется также на освещенность тротуаров, примыкающих к проезжей части улиц категорий Б и В с переходными и низшими типами покрытий

Из таблицы следует, что если будет обеспечена освещенность поверхности любой территории, за исключением пешеходных тоннелей и ведущих к ним лестниц, не менее 10 лк, то требования СНиП 23-05-2010 будут удовлетворены.

При выборе уровня освещенности поверхности следует учесть, что со временем происходит снижение яркости свечения светодиодов, и световой поток от светильника будет уменьшаться. Поэтому, чтобы гарантировать соответствие освещения поверхности требованиям СНиП на протяжении всего срока службы светильника следует выбирать светильник не менее, чем с двух кратным запасом по световому потоку. Например, если по таблице требуется средняя горизонтальная освещенность 10 лк, то для расчетов при выборе светильника нужно брать значение 20-30 лк.

Технические характеристики уличных светильников

После выбора класса защиты, которому должен соответствовать светильник и определения уровня освещенности, который нужно обеспечить на освещаемой поверхности можно переходить к выбору светодиодного светильника по остальных технических характеристикам.

Таблица технических характеристик уличных светодиодных светильников
Параметр Единица измерения Величина Комментарии
Диапазон рабочей температуры °С (градусы Цельсия) -60° ~ +40° Температура окружающей среды при которой светильник должен работать и соответствовать заявленным техническим характеристикам
Класс защиты Обозначается IP См. таблицу выше Определяет способность светильника сохранять работоспособность в условиях наличия пыли и воды
Диапазон напряжения питания В (вольт) 100-265 Диапазон изменения величины питающего напряжения, при котором светильник сохраняет работоспособность и обеспечивает заявленные производителем технические характеристики
Потребляемая мощность Вт (ватт) - Мощность, которую потребляет светильник во время работы от питающей сети
Мощность, потребляемая ЛЭД модулем Вт (ватт) - Мощность, которую потребляют светодиоды во время работы светильника
Световой поток лм,lm (люмен) Зависит от мощности Величина светового потока видимая глазом человека, который излучает светильник
Световая эффективность лм/Вт 80-100 Количество света, которое излучает светильник на один ватт потребляемой мощности. Чем величина больше, тем экономичнее светильник
Уровень освещенности от расстояния м-лк Зависит от мощности Величина освещенности поверхности в зависимости удаленности ее от светильника. При удалении от светильника освещенность снижается обратно пропорционально квадрату расстояния от светильника.
Угол излучения ° (градус) Зависит от конструкции Стандартный угол излучения для светодиодных светильников составляет 120°
Световое пятно м×м Зависит от конструкции Размеры площади поверхности, которую может осветить светильник в зависимости от расстояния до нее
Коэффициент мощности φ (косинус фи) 0,5-0,95 Зависит от схемы драйвера, чем величина больше, тем качественней драйвер. В качественных светильниках φ>0,95
Цветовая температура К (градусы Кельвина) 3000-6000 Характеризует оттенок белого света. Уличные светильники обычно выбирают с цветовой температурой 4000К или 5000К
Индекс цветопередачи (CRI) Ra 0-100 Индекс цветопередачи характеризует изменение цвета предметов, освещенных светодиодным светильником от натурального. Для качественной цветопередачи величина CRI должна быть не менее 80.
Коэффициент пульсации светового потока Кп,% 0-20 Зависит от схемы драйвера, чем меньше в постоянном токе пульсаций, тем качественней драйвер. В качественных светильниках Кп<5%
Срок службы тыс. часов 50-100 Со временем происходит деградация кристаллов светодиодов и световой поток светильника уменьшается. При снижении светового потока светильника более чем на 50%, он считается неисправным
Встроенный датчик движения - - Позволяет экономить электроэнергию благодаря включению светильника только во время появления в зоне его освещения движущихся объектов
Встроенный датчик освещенности - - Обеспечивает автоматическое включение светильника при наступлении темноты
Встроенный датчик шума - - Обеспечивает автоматическое включение светильника при превышении заданного уровня акустического шума
Габаритные размеры мм×мм×мм Зависят от мощности С увеличением мощности светильника его габаритные размеры увеличиваются
Вес кг Зависит от мощности С увеличением мощности светильника его вес увеличивается

Производители в документации на светодиодные светильники приводит не все перечисленные в таблице технические характеристики, хотя перечень не является полным. Это обычно связано с желанием скрыть истинный уровень качества уличного светильника. Чем больше приведено параметров в паспорте или техническом описании светильника, тем с большей уверенностью можно утверждать, что он высокого качества.

Формула и онлайн калькулятор для расчета параметров

При подборе уличного светодиодного светильника нужно, исходя из требуемой освещенности поверхности, которая измеряется в люксах, определить величину светового потока светильника, который измеряется в люменах. И на этом этапе выбора светильника обычно возникают трудности, так как не все представляют, как зависят друг от друга эти физические величины.

Световой поток обозначается латинской буквой Ф, выражается в люменах и определяет величину световой мощности, которую излучает источник света, в уличном светильнике это лампа, светодиод или светодиодная матрица.

Освещенность поверхности, обозначается латинской буквой Е, измеряется в люксах и пропорционально зависит от величины светового потока Ф. Чем больше у любого светильника мощность светового потока, тем ярче он будет светить.

Уличный светильник у дороги со схемой светового потока

Освещенность на равноудаленной от источника света поверхности площадью 1 м2 величиной 1 люкс создается в случае падения на нее светового потока величиной 1 люмен. При удалении светильника от освещаемой поверхности ее освещенность снижается, обратно пропорционально квадрату расстояния. Например, освещенность поверхности на расстоянии одного метра от светильника составляет 900 люкс. Если приподнять светильник на высоту 2 метра, то освещенность поверхности уменьшится в 4 раза, а если на 3 метра, то уже уменьшиться в 9 раз и составит всего 100 люкс.

Таким образом, чтобы определить световой поток светильника, необходимо требуемый уровень освещенности поверхности умножить на ее площадь, получается следующая формула: Ф=Е×S.

где:
Ф – световой поток, измеряется в люменах, обозначается лм;
Е – освещенность поверхности, измеряется в люксах, обозначается лк;
S – площадь освещаемой поверхности, измеряется в квадратных метрах, обозначается  м2;

Зная вышеприведенные законы и школьный курс геометрии не сложно составить полную формулу для оценки требуемой мощности светового потока светильника исходя из необходимой освещенности поверхности, высоты его подвеса и угла светового потока.

Формула расчета светового потока.
где:
Ф – световой поток, измеряется в люменах, обозначается лм;
Е – освещенность поверхности, измеряется в люксах, обозначается лк;
π – число Пи, равно 3,14;
h – расстояние от светильника до освещаемой поверхности, измеряется в метрах, обозначается м;
а – угол излучения светового потока светильника, измеряется в градусах, обозначается °;

Рассчитывать световой поток удобно с помощью онлайн калькулятора, который производит вычисления в соответствии с представленной выше формулой.

  Онлайн калькулятор для расчета светового потока и площади освещения прожектором  
Освещенность, лк:
Расстояние от светильника до освещаемой поверхности, м:
  Угол излучения светового потока, °:  

В формулу я не стал вводить коэффициенты, учитывающие неравномерность освещения, отражающую способность освещаемой поверхности территории и объектов, расположенных на ней, снижения мощности светового потока светильника со временем, так как узнать их точные значения невозможно.

Пример расчета параметров

Как известно, чем лучше освещена территория в темное время суток, тем комфортнее человеку. Поэтому для учета всех возможных потерь мощности светового потока, в том числе и уменьшения со временем яркости источника излучения светильника (производители считают, что светильник выработал свой ресурс, когда мощность светового потока снизилась на 50% от первоначальной), рекомендую увеличить выбранную освещенность территории как минимум в три раза.

Например, имеется территория перед крыльцом загородного дачного домика или гаражом площадью 10 м2 Из личного опыта утверждаю, что для комфортной освещенности площадки двора необходим светильник, обеспечивающий освещенность не менее 10 лк, хотя по требованиям СНиП 23-05-2010 достаточно и 2 лк. С учетом вышеперечисленных факторов, влияющих на освещенность, вместо 10 люкс в онлайн калькуляторе прописываем 30. Удобное место на стене дачного домика находится на высоте 4 м.

Подставим данные в соответствующие окошки онлайн калькулятора. Получаем, что для отличного освещения площадки необходим светильник с углом излучения 120° обеспечивающий световой поток 1508 лм. При этом площадь территории будет освещена с большим запасом - 50 м2.

Если такой размер площади является излишним, то можно уменьшить угол излучения уличного светильника, например до 80°. В таком случае потребуется светильник со световым потоком 470 лм и площадь составит 23,5 м2.

Если есть возможность, то можно подобрать высоту подвеса светильника. Например, подвесить светильник на высоте 2 м. Тогда освещаемая площадь составит 12,6 м2, а мощности светового потока будет достаточно 337 лм. Чем меньше мощность светового потока светильника, тем меньше он будет потреблять электроэнергии. Это особенно актуально при продолжительном времени работы уличного светильника или прожектора.

В среднем, согласно данным приведенной ниже таблицы, светодиодные светильники излучают световой поток 100 люмен на один ватт потребляемой мощности (100 лм/Вт), поэтому несложно по величине излучения светового потока светильником оценить, какой мощности он потребуется. Для этого нужно величину рассчитанного светового потока поделить на 100. Для последнего примера получится: 377 лм : 100 лм/Вт=3,7 Вт. Для более точного расчета нужно воспользоваться техническими характеристиками выбранной модели светильника.

Таблица световых потоков и отдачи популярных источников света
 Тип источника света  Световой поток, лм  Световая отдача, лм/Вт 
Лампа накаливания 25 Вт2209
Лампа накаливания 100 Вт134013
Лампа накаливания 200 Вт304015
Галогенная лампа накаливания 220 В, 55 Вт90016
IRC-галогенная лампа накаливания 12 В170026
Люминесцентная лампа 36 Вт2850-335071-84
Люминесцентная лампа 215 Вт1750081
Металлогалогенная газоразрядная лампа 250 Вт2010080
Металлогалогенная газоразрядная лампа 400 Вт35000-4200088-105
Металлогалогенная газоразрядная лампа 2000 Вт1750081
Дуговая ртутная лампа (ДРЛ) 400 Вт2400050-60
Индукционная лампа 40 Вт280090
  Газоразрядная лампа (автомобильный ксенон) 35 Вт  3000—340093
Светодиодная лампа 2700K, 6 Вт40067
Светодиодная лампа 2700K, 13 Вт100077
Светодиодная лампа 4500K, 10 Вт93594
Светодиод Luminus CSM-360 80 Вт6000115
Светодиод Cree XLamp XHP70 32 Вт4022150
Солнце 3,63×102893

С учетом того, что в расчете заложен достаточный запас по освещенности поверхности, то для полноценного освещения территории площадью 10 м2 перед крыльцом загородного дома можно смело покупать любой уличный светодиодный светильник с мощностью потребления 4 Вт при условии, что он будет подвешен на высоте 2 м и иметь угол излучения светового потока 80°.

Если в результате расчета мощность светильника получилась большой, то целесообразно установить несколько светильников меньшей мощности, суммарная мощность которых должна быть не менее расчетной. Таким образом, будет достигнуто более равномерное освещение поверхности и в случае поломки одного из светильников территория все равно будет освещена.