В помощь автолюбителям

Автомобильный тахометр своими руками

Тахометр является измерительным прибором и служит для измерения частоты вращения валов механизмов. В автомобилях для измерения частоты вращения коленчатого вала двигателя ранее устанавливались механические тахометры, современные автомобили укомплектованы электрическими или электронными тахометрами.

При эксплуатации автомобиля тахометр служит индикатором для контроля стабильности работы двигателя на холостом ходу и при движении. По стабильности оборотов двигателя на холостом ходу можно судить о состоянии карбюратора, системы зажигания и самого двигателя.

При установке оборотов холостого хода и регулировки угла опережения зажигания двигателя без стробоскопа и тахометра не обойтись. Необходимо одновременно производить регулировку и наблюдать за оборотами двигателя. После каждого подкручивания винта регулировки бегать и смотреть показания тахометра, установленного в салоне автомобиля утомительно. Может выручить установленное в салоне дополнительное зеркало, но это тоже не лучшее решение. Гораздо удобнее иметь тахометр, вмонтированный в стробоскоп.

Автомобильный тахометр вмонтированный в стробоскоп

При изготовлении стробоскопа своими руками я так и сделал. Вмонтировал, тахометр в корпус стробоскопа. При проверке и настройке режима работы двигателя такое техническое решение показало удобство в работе.

Опубликованные в Интернете аналоговые схемы тахометров отличаются большей погрешностью показаний, выполненные на цифровых микросхемах не каждому автолюбителю под силу повторить. Предлагаемое схемное решение тахометра отличается простотой и высокой точностью показаний в независимости от изменения температуры окружающей среды и питающего напряжения. Имеет растянутую шкалу, что позволяет при применении малогабаритного стрелочного индикатора получать результат измерений с высокой точностью.

Электрическая принципиальная схема тахометра

Представленная схема тахометра отличается простотой и доступностью деталей для повторения благодаря применению интегрального таймера - микросхемы КР1006ВИ1.

Схема тахометра электрическая принципиальная

Схема состоит следующих функциональных узлов. Формирователя импульсов, выполненного на VT1-VT2, широтно-импульсного модулятора на микросхеме DA1 типа КР1006ВИ1 и резисторного моста на резисторах R8-R13. Для снятия показаний применен электро динамический стрелочный микроамперметр. К недостаткам схемы тахометра можно отнести необходимость балансировки моста для каждого типа миллиамперметра при повторении схемы. Но это не сложная операция.

Принцип работы схемы тахометра

При поступлении импульсов от прерывателя или катушки индуктивности, используемой в стробоскопе, конденсатор С1 через диод VD1 и резистор R1-R2 перезаряжается, создавая на базе транзистора VT1 импульсы, открывая его. В результате на коллекторе транзистора, включенного в ключевом режиме, образуются короткие положительные импульсы, длительность которых определяется емкостью конденсатора С1. VT2 служит для инвертирования импульсов, перед подачей на вход DA1. Форма импульсов приведена на электрической схеме тахометра с правой стороны, верхняя осциллограмма. На фото ниже структурная схема КР1006ВИ1.

Структурная схема интегрального таймера КР1006ВИ1

Интегральный таймер КР1006ВИ1 включен по типовой схеме формирователя импульсов. По положительному фронту импульсов, поступающих на вход 2, микросхема формирует на выходе 3 положительные импульсы с шириной, линейно изменяющейся в зависимости от частоты поступающих на вход. Частота выше, импульсы шире. Исходная ширина импульсов зависит от постоянной времени R6, R7 и C3.

Выходящие с вывода 3 микросхемы DA1 импульсы поступают на левое плече моста тахометра, которое образуют резисторы R8-R9 и R11. На правое плече моста тахометра, которое образую резисторы R10 и R12, R13 поступает постоянное опорное напряжение +9В с интегрального стабилизатора напряжения К142ЕН8А. Конденсатор С4 исключает дергание стрелки тахометра при измерении низких оборотов двигателя. Стабилизатор так же обеспечивает питание всех активных элементов тахометра. В диагональ моста включен микроамперметр. Благодаря такому схемному решению удалось исключить нелинейные элементы, получить линейное показание миллиамперметра при изменении частоты и обеспечить высокую точность измерений частоты вращения двигателя за счет растянутой шкалы. Так как в тахометре, по соображениям габаритных размеров, применен малогабаритный миллиамперметр от индикатора уровня записи магнитофона, у которого длина шкалы мала, то только благодаря растянутой шкале удалось получить высокую точность показаний.

Микросхемы стабилизаторов серии К142ЕН обеспечивают стабильное выходное напряжение в широком диапазоне температуры, чем и обусловлено применение микросхемы К142ЕН8А в тахометре. Конденсаторы С2, С5 и С6 установлены для сглаживания пульсаций питающего напряжения.

Конструкция и детали тахометра

Так как схема простая, то печатную плату я не разрабатывал. Монтаж всех деталей, кроме миллиамперметра, выполнил на универсальной макетной плате размером 30 мм×50 мм. На фотографии видно как размещены элементы схемы.

Расположение деталей тахометра на монтажной плате

Для подвода питающего напряжения и входного сигнала применен трех контактный разъем. Шкала миллиамперметра напечатана на принтере и приклеена сверху на его штатную шкалу.

Шкала измерительного прибора тахометра

Плата с деталями закреплена в крышке корпуса стробоскопа на винтах. Миллиамперметр установлен в вырезанном в крышке корпуса прямоугольном окне и закреплен с помощью силикона.

Тахометр в автомобильном стробоскопе

Такая конструкция размещения тахометра обеспечивает удобство доступа к плате стробоскопа, достаточно снять крышку, отсоединить разъем.

Настройка тахометра

Если не допущены ошибки при монтаже деталей и исправны элементы схемы, то тахометр сразу начнет работать. Необходимо будет только подогнать номиналы резисторов моста. Для этого нужно с импульсного генератора подать на вход тахометра прямоугольные импульсы частотой, взятой из ниже приведенной таблицы и откалибровать шкалу.

Таблица перевода оборотов вращения двигателя в частоту
Обороты двигателя, оборотов в минуту 700800900100011001200150020002500300035004000450050006000
Частота генератора, Гц 1213151718202533425058677583100
Частота генератора, 2×Гц 242630343640506684100116134150166200

Так как в автомобилях обычно за один оборот вала двигателя датчик выдает два импульса, то при калибровке тахометра нужно устанавливать частоту на генераторе в два раза больше. Например, при калибровке точки шкалы 800 нужно будет подать на вход тахометра импульсы частотой не 13 Гц, а 26 Гц. Ряд частот для такого случая приведен в нижней строке таблицы.

Для того, чтобы не испытывать трудностей при калибровке шкал тахометра нужно знать принцип работы мостовой схемы. Перед Вами принципиальная схема моста постоянного тока. При равенстве соотношений величин резисторов R1/R2 и R3/R4 напряжения в точках диагонали моста A и B равны, и ток через mA не протекает, стрелка стоит на нуле. Если, например, уменьшить величину резистора R1, то напряжение в точке А увеличится, а в точке В останется прежним. Через миллиамперметр, находящийся в диагонали моста потечет ток и стрелка отклонится. То есть при постоянном напряжении в точке В и изменении напряжения в точке А стрелка прибора будет двигаться относительно шкалы.

Резисторный мост в схеме тахометра

В схеме тахометра функцию резистора R1 выполняет резистор R9, и так далее. При увеличении оборотов двигателя, частота и ширина импульсов с выхода микросхемы увеличивается и таким образом увеличивается напряжение в левой точке подключения миллиамперметра, протекающий ток увеличивается и стрелка отклоняется. Резисторы в плечах моста подобраны в таком соотношении, чтобы мост был изначально разбалансирован, и равенство напряжений в точках подключения миллиамперметра наступало при 700 оборотов двигателя.

Номиналы резисторов на схеме указаны при сопротивлении рамки миллиамперметра 1,2 кОм. Если использовать прибор, имеющий другое сопротивление рамки, то придется подбирать номинал резисторов R8, R9 и R12, R13, временно заменив их переменными. После калибровки прибора, измеряется сопротивление переменных резисторов, и они заменяется постоянными.

Переключатель S1 можно не устанавливать и настроить прибор для измерения в требуемом диапазоне по одной шкале. В таком случае точность измерений снизится в два раза. При растянутой шкале прибора такой точности тоже будет достаточно.

Тахометр, выполненный по предложенной схеме, является законченным прибором и его можно применять для измерения частоты вращения любых валов, например, двигателя моторной лодки, электродвигателей. В качестве датчиков могут использоваться датчики холла, фото и электромагнитные датчики. Достаточно доработать схему входного формирователя импульсов.